کاربرد روش پنجره لغزان برای انتخاب ساختار شبکه عصبی با تاخیر زمانی در پیش بینی سری های زمانی مالی
Authors
abstract
چکیده شبکه عصبی با تاخیر زمانی، یک ابزار مدل سازی برگرفته از محاسبات هوشمند است که در کنار روش های کلاسیک برای پیش بینی سری های زمانی مالی بکار گرفته می شود. این مدل اغلب در مواردی که از سری زمانی داده های فراوان، اما از ساختار مدل اطلاعات محدود وجود دارد، استفاده می شود، از این رو انتخاب ساختار و ارزیابی آن خود یک چالش است.در این مقاله یک مدل مبتنی بر شبکه عصبی با تاخیر زمانی برای پیش بینی معیارهای مالی بازار سهام ارائه شده و روش پنجره لغزان برای ارزیابی عملکرد پیش بینی کننده، بکار برده شده است. در این مقاله انتخاب ساختار مناسب شبکه، تعداد عملگرهای تاخیری، تعداد بهینه داده های پیشین و پسین و معیار کمّی مناسب برای ارزیابی عملکرد پیش بینی کننده، مورد مطالعه قرار گرفته است. عملکرد این مدل روی شاخص قیمت سهام چهار بنگاه بزرگ اقتصادی در بازار سهام لندن مورد بررسی قرار گرفته است. نتایج به دست آمده، نشان می دهد با روش پیشنهادی، می توان ساختاری انتخاب کرد که متوسط درصد خطا، متوسط مجذور مربعات خطا و معیار رگرسیون خطی خروجی شبکه در حد قابل توجهی کاهش می یابد. طبقه بندی jel: c6, c8. کلیدواژه ها: پیش بینی سری زمانی، شبکه عصبی با تاخیر زمانی، پنجره لغزان، معیار خطا پیش بینی.
similar resources
کاربرد روش پنجره لغزان برای انتخاب ساختار شبکه عصبی با تاخیر زمانی در پیشبینی سریهای زمانی مالی
چکیده شبکه عصبی با تاخیر زمانی، یک ابزار مدلسازی برگرفته از محاسبات هوشمند است که در کنار روشهای کلاسیک برای پیشبینی سریهای زمانی مالی بکار گرفته میشود. این مدل اغلب در مواردی که از سری زمانی دادههای فراوان، اما از ساختار مدل اطلاعات محدود وجود دارد، استفاده میشود، از این رو انتخاب ساختار و ارزیابی آن خود یک چالش است.در این مقاله یک مدل مبتنی بر شبکه عصبی با تاخیر زمانی برای پیشبینی مع...
full textکاربردهای شبکه های عصبی در پیش بینی سری های زمانی
استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...
full textارائه روشی برای پیش بینی پایدار سری های زمانی با کاربرد در مسائل مالی با استفاده از روش Robust
به منظور مدلسازی و تخمین مناسب و قابل اعتماد پارامترها در مدلهای دادههای خودهمبسته، از رویکردهای پایداراستفاده میشود. وجود دادههای پرت و آلودگیها، تاثیری مخرب در تخمین پارامترهای این مدلها دارد. از آنجایی که در اغلب مسائل مالی، دادههای گذشته بر دادههای اخیر اثرگذار هستند، این دادهها معمولاً در قالب سری زمانی مدلسازی میشوند. در این تحقیق، مدلهای خود رگرسیون به عنوان یکی از مدلهای مط...
full textکاربرد مدل شبکه عصبی- موجک برای پیش بینی ویژگی های غیرایستا و غیرخطی سری زمانی تراز آب زیرزمینی
سفره های آب زیرزمینی غالباً به عنوان سیستم هایی با ویژگی های غیرایستا و غیرخطی شناخته می شوند. مدل سازی این سیستم ها و پیش بینی حالت های آینده آن ها نیازمند تشخیص این ویژگی های بنیادی است. اخیراً، آنالیز موجک به دلیل توانایی آن در رمزگشایی ویژگی های اشاره شده، به طور گسترده ای در زمینه پیش بینی سری های زمانی هیدرولوژیکی مورد استفاده قرار گرفته است. در این مقاله توانایی مدل ترکیبی ...
full textکاربردهای شبکه های عصبی در پیش بینی سری های زمانی
استفاده از روش های غیر کلاسیک در شناسایی مدل و پیش بینی رفتار سیستم های پیچیده، مدتهاست در محافل علمی و حتی حرفه ای متداول و معمول شده است. در بسیاری از سیستم های پیچیده و خصوصا غیر خطی که مدل سازی و به دنبال آن پیش بینی و کنترل آنها از طریق روش های کلاسیک و تحلیلی امری بسیار دشوار و حتی بعضا غیر ممکن می نماید، از روش های غیر کلاسیک که از ویژگی هایی همچون هوشمندی، مبتنی بر معرفت و خبرگی برخوردا...
full textمقایسه ی مدل های شبکه های عصبی مصنوعی و سری های زمانی برای پیش بینی قیمت گوشت مرغ در ایران
با توجه به اهمیت پیش بینی قیمت گوشت مرغ، در تحقیق حاضر قیمت این محصول با استفاده از روش ARIMA و شبکه های عصبی مصنوعی برای افق های زمانی یک ماهه، شش ماهه و دوازده ماهه پیش بینی گردید و این فرضیه که شبکه ی عصبی در پیش بینی قیمت گوشت مرغ از کارایی بیشتری نسبت به مدل های سری زمانی برخوردار است، مورد بررسی قرار گرفت. داده های مربوط به این متغیّر برای دوره ی زمانی1371:1 تا 1385:11 بوده و از شر...
full textMy Resources
Save resource for easier access later
Journal title:
پژوهشنامه اقتصادیPublisher: دانشگاه علامه طباطبایی
ISSN 1735-210X
volume 15
issue 2 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023